AD-770 881

DATACOMPUTER PROJECT SEMI-ANNUAL
TECHNICAL REPORT, FEBRUARY 1, 1973
TO JULY 31, 1973

Compucter Corporation of America

Prepared for:

Army Research Office-Durham
Advanced Research Projects Agency

1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5245 Port Royal Road, Springfield Va. 22151

COMPUTER CORPORATION OF AMERICA

DATACOMPUTER PROJECT
SEMI-ANNUAL TECHNICAIL REPORT

February 1, 1973 to July 31, 1973

AD 70881

Contract No. DAHCO4-T71-C-0011
ARPA Order No. 1731

NATIONAL TECHNICAL
INFORMATION SERVICE

Submitted to:

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Managcment

e

Y

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139

nmh
et Nemet Do e EOER BN

|
|
|
f
|
|

DATACOMPUTER PROJECT
SEMI-ANNUAL TECHNICAL REPORT

February 1, 1973 to July 31, 1973

S e
gt

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monltored by the
U.S. Army Research Office-Durham under Contract No. DAHCOU4-T71-
C-0011. The vliews and concluslons contained 1n this document
are those of the authors and should not be interpreted as
necessarlly representing the officlal policles, elther expressed
or implied, of the Advanced Research Projects Agency or the

U.S. Government. .
t.

i
|
|
i

TN

£ R NS SR SIS D WO MRS Bved Gmes Gwemd Geed el e e e W BN BN

FHRRIRAE

Abstract

PDuring the present reporting period, the datacomputer system
achleved its 1initlal operating capability on the Arpanet,
and a number of host sites began using the service. For

the month of July, the number of weekly connections to the
system averaged about 500.

(Y3

.

Table of Contents

Page
Abstract
B, OWEEVLIEW 55 5 e s ole et o/s sla ok 5l e 5Me tals ool B ol oe 2 s 1
1.1 Review of Basic Conceptsceeeeveeocesnss 1
142 | STALUS Of PROJEEE & ... ce sio ol e o sus s it 56 05 oxe 3
2. Deslgn Activities ...iiiiiiiereercecenscsnenenns 7
2.1 Datalanguage .c.ceeeeresrccrroscaccccanse o 7
2.2 Software SYStemceeeveerecoasccosansens 8
3. Software Implementationcccc.. 5 CACCIIODTIRO Ok 9
3=1 Reguest Hendler .sscicececoccssanse S G © 1% o 9
3 3.2 Servicesc.. 0N L 19O SR e AL b Bl bioe 10
. 4. 1Initial Network Service S ST T § 12
4.1 Network Survev Data s o st L deis o 12
4.2 ETAC Weather Dat8 ...iceeeveeercecocononens 12
4.3 DPFTP R T e e e OPLCI0 0 b o 13
1 4. Utilization Statistlcsveveeeens Moo s fo 13
5. Miscellaneous Acti-—*ties o o [0 W S Tels T E 15
] 5.1 Selsmle Daf:- . KIng GroUp .es s s 25 6s0mm7 0 15
- : 5.2 Technical Presentationsceceeevee. 3 o o 15
l Apnendix: Versior 0/9 Language S~-cifications
Figures
1. Loglcal View of Datacomputer RN SRR G SR 2
2. Hardware Overview of Systemceceeeee SRl oe e ok
3. Hardware Block Diagram - CCA Installation

(Equipment in dashed outline 1s planned for 197u)

v
.

‘ M Gy eed i $d

— et memew st Mewel e} O s R BN OPEN TN

g ap—r

1. Overview

1.1 Review of Basic Concepts
The goal of the project continues to be the development of
a shared, large-scale data storage utility, to serve the
needs of the Arpanet community.

The system under development will make it possible to store
within the network such files as the ETAC Weather File or

the NMRO Seismic Data File, which are measured in hundreds

of billions of bits, and to make arbitrarily selected parts

of these files availlable within seconds to sites requesting
the information. The system 1s also intended to be used as

a centralized facility for archiving data, for sharing data
among the various network hosts, and for providing inexpensive
on-line storage to sites which need to supplement their local
capabllity.

Logically, the system can be viewed as a closzed box which

1s shared by multiple external procesrs rs, and which 1is
accessed in a standard notation, "datalanguage" (see Fig. 1).
The processors can request the system to store information,
change information already stored in the system, and retriev~
stored information. To cause the datacomputer to take action,
the external processor sends a "request" expressed in data-~
language to the datacomputer, which then performs the desired
data operations.

From the user's point of view the datacomputer 1s a remotely-
located utility, accessed by telecommunications. It would be
impractical to use such a utility if, whenever the user wanted
to access or change any portion of his file, the entire file

-1~

DATACOMPUTER

DATALANGUAGE

PROCESSOR
2

PROCESSOR
1

Flgure 1. Loglcal View of Datacomputer

D

had to be transmitted to him. Accordingly, data management
functions (information retrieval, file maintenance, backup,
access security, creation of direct and inverse files, main-
tenance of file directories, etc.) are performed by the data-
computer system itself. The user sends a "request", which
causes the proper functions to be executed at the datacomputer
without requiring entire files to be shipped back and forth.

The hardware of the system 1s shown in overview in Fig. 2
and in greater detall in Fig. 3.

The program for the system processor handles the interactions
with the network hosts and 1s designed to control up to three
levels of storage: primary (core), secondary (disk), and
tertiary mass storage. Currently, the CCA faclility 1is operating
with primary and secondary storage only, with the addition of

tertiary storage planned for 1974. Installation of a tertiary
storage module will leave datalanguage unchanged, and will
therefore be imperceptible to users of the system (except
insofar as 1t affects performance and the total storage capacity
available for data).

In addition to using the dedicated equipment at CCA it is
planned that datacomputer suvrvice will also make use of
hardware resources located at NASA/Ames, using CCA software.
The two sites will provide mutual backup for one ancther,
thereby guarding against accidental loss of data and providing
for satisfactory uptime of the overall service.

1.2 Status of Project
During the present reporting period, the datacomputer system
achieved its 1initial operating capabllity on the Arpanet, and
a number of host sites began using the service {see Section 4).

T TR T TP

PRIMARY

STORAGE

MEMORY BUS
SECONDARY SYSTEM TERTIARY
STORAGE PROCESSOR STORAGE
1/0 BUS
IMP
S CRENCE PERIPHERALS
IMP I

ARPANET

Figure 2. Hardware Overview of System

-4

Pl TR Y,

WERE SR

stk

@)

L

g eemnd dewey dmed g

ME10 ME10 ME1D ME1I0 ME1D
MEMONY MEMORY MEMORY MEMORY MEMORY
116K) ™) {16K) 116K) 118K
MEMORY
tUs
DF10DATA TENEX
CHAMNEL — Pacer
PACK CONTROL Ka10 XSR3S
centmaL | S30%
RPO2 DISK
RPOZ DISK L] A TUSS DUAL TUSE DUAL
pi et] DECTAPE DECTAPE
RPO2 DISK
"PO2 ISK
arozoisx| || sai0 LP10 LINE
CONTROL PRINTER
e
T
LIN N et
.] conro
DC108
V3. CONC.
A 104 LINE. TESWINALS
Tar i '
TM10A TAPE
-
= CONTROL o
CHANNELS LOGGING
rJ Ve s s m
il TERTIARY
12 | svomace % |7ume
1 INvereace MAG. TAPE
j - com e e
CALCOMP i 'rsmruuvw-1
DUAL storace |
Dig b, IMPIO 303 __ ARPA
L FACE MODEMS NETWORK
hild [y
Yaose DIAL.UP
MODEMS LINES

Figure 3. Hardware Block Diagram - CCA Installation
(Equipment in dashed outline is planned for 1974)

-5-

e

i W)

SEN GRE W SR AR O NG el Beed weemd Geed Seed e Seeed ey

&

The service 1s based on Version 0/9, which was completed

during the present period. (Frevious versions of the system

had been used only for demonstration and for iniernal CCA
development purposes.) This version offers a (somewhat primitive)
subset of the capabilities of the full datalanguage discussed

in Working Paper No. 3.

The primary restriction of Verslon 0/9 1s that elementary data
types must be flxed-length ASCII strings. This restriction
will be 1lifted in Version 0/10, scheduled for December 1973,
which will provide a larger subset of the datalanguage capa-
bilities.

Currently, only disk storage 1s avallable 1nternally to the
system. (Total disk storage 1s 9 x 108 bits, tc be 1ncreased
to 2.34 x 10° bits in the fourth quarter of 1973.) Plans call
for the addition of tertiary storage in 1974. Since data-
language 1s device-independent, theze 1lncreases 1n storage
capacity will not affect the user programs ruining on network
hosts.

wbs

- —_——y J—— W T E—— — —— —— T " '

2. Design Activities
2.1 Datalanguage

A formal specification of datalanguage Versicn 0/9 was completed
(see Appendix).

Progress was made in the specification of datalanguage for
Version 0/10. This version, to be avallable over the network
in December 1973, incorporates a data security facility at

the directory level, more general data types and more general
data structures. Specifically, there are arbitrary byte
strings as well as character strings. Variable length as well
as fixed length contalners are permitted. In his data des-
cription, the user has some control over alignment of logical
obJect and physical object boundaries. Physical byte sizes of
36, 32 and 8 are supported.

Based on the results with datalanguage to date, a major design
iteration has begun. In the revised language, attention will
be glven to more general data structures, pointers, a syntax
that 1s better for generation of language requests by programs,

language extenslbility, multiple descriptions of data, data
integrity and privacy.

From the first language deslgn perlod, the blggest changes 1in
thinking have come from a better understanding of the data
sharing problem on the network scale. In order for the network
community to get the most out of the datacomputer facility,
groups of users must be able to do two things they could not

do well with the initial language: (1) develop theilr cwn systems
of shared software that reside at the datacomputer, and

L

(2) have a description of the data that i1s independent of
both the stored organization and the descriptions used by
others.

That is, users must be able to have shared collections of
access functions, data validation functions, and the 1like,
specified in datalanguage, stored at the datacomputer, and
assoclated with particular collections of data. OCnly in this
way can distributed systems of user programs have a shared,
centralized data management faciiity that 1s built around the
datacomputer scftware but speclalized for thelr requirements.

The independent description faclility 1s needed so that the
proper modularity cun be designed into the global system
involving datacomputer software, user requests, user flles
stored on the datacomputer, data descriptions, and a distributed
system of user programs. It wlll be important to make com-
ponents of such large systems as independent as possible. User
programs should be independent of the stored data organlzation
when this 1s feasible. Similarly, user programs not concerned
with certain parts of the data collectlon should not have to
know about them, both for protection of privacy and for
simplicity 1n system reorganization.

Facilities that meet these requirements are belng investlgated.
In addition, earller work on tne language 1s being reviewed
and improvements are belng considered.

2.2 Software System
The current design of the software system bzslically corresponds
to the design documented in Working Paper No. 5 (February 29,
1972). Detailed design has ccrntlnued as necessary, and is
discussed in Section 3 as part of the 1mplementation effort.

s peme n S

% TEE s e S T o e T
b B e b s S ke e s iR B g iie ¥ oot e

A SR DN TN WEN aead e e

H

-

3. Software Implementation

During this period, implementation of Version 0/9 of the
datacomputer was completcd. The basic p.ogram structure 1s
the same as in Version 0/8, but the new release incorporates
additional capabilities. Version 0/9 18 a multi-user system

“that allows simultaneous access to shared riles. It includes

minimal updating faclilit.es, improved error dlagnostics and
recovery procedures, and standard 1nitial connection protocol.
The facilities are described in detall in "Specification for
Datalanguage, Version J/9", MIC 16446, June 6, 1973 (see
Appendix of present report).

3.1 Request Handler
The Request Handler was developed for Version 0/8 along the

lines of the system architecture outlined in Working Paper
No. 5.

New in Version 0/9 1s the ability to delete files and to append
to files. Every open data contalner has a user-specified mode
assoclated with 1t. The modes are: read, write and append.

An assignment to a contalner whose mode 1s writc replaces the
data already in that container. If the mode 1s append, the
new data 1s added to the end of the container. Parsing of the
datalanguage and tuple generatlon 1s essentlally the same in
both cases. During execution, one tuple (the Open tuple) sets
up a pointer to the beginning location of the new data. In
the write case, the polnter points to the beginning of the
container; in the append case, to the end. Except for the

Open tuple, executlion of write and append assignments 1s
identical.

TR TR I RO YT PRy R W
L T T TR NFTERSTY TR AT : P i

WWM ;i e et i s e T

R o

The datacomputer automatically updates the inversion when a

file 1is updated. Other users are locked out until the update
operation 1s complete.

Delete requests are passed immediately to a command executor
(C0), which calls the services routine to remove the node
from the directory. No parse tree 1s generated.

Users can mix inverted flle keys and non-keys freely 1in

expressions. Where possible, the datacomputer takes advantage
of the inversion in evaluating the expression.

3.2 Services
Storage Manager

e e T P T R R T R T T SR R T T e

The storage manager now recognizes several kinds of devices:
disn, special disk, and tape. Data structures have been
developed for describing each device, and the address-mapping
and storage allocation routines make use of these structures.

This was done in preparation for adding a tertliary store as
a new device.

bt i e et med pues wems o omend wend BRSt WWE SR R R IR BB B

I/0 Manager
Standard initial connection protocol was implemented. Users

can open secondary network connections for the transfer of
data.

Directory System

Directory nodes can now be deleted.

The user's datalanguage description is stored in the directory.
The user can access the description as necessary. He can also
get a list of all nodes in the directory.

~10-

¥

Supervisory Functions

The datacomputer runs under a monitor which allows for several
users. These users share a database and can simultaneously
access a flle. To support this feature, all the code has bLeern
made re-entrant.

A module (OP) has been added to provide for communication with
a system operator.

Messages have been divided into five categories: synchronization,
informational, user error, circumstantial error, and data-
computer error. A code prefixed to each message indicates to

the user program the category of each message. In some cases,
the cofde uniquely identifles the message. These codes aid the
user program in taking appropriate action.

Error recovery procedures have been added. Depending on the
seriousness of the error, these range from restarting one

user to bringing down the entire datacomputer system.

A dump/restore utility for datacomputer files has been
implemented.

B

-

i i d D M DEN R S N

I
]
l
i
i
|
i
0

T g T TSN TS IR

4, Initial Network Service

4,1 Network Survey Data
The datacomputer provides on-line storage and data manzgement
services for the Network SURVEY program that runs at MIT
Project MAC. SURVEY attempts to do a complete ICP to the
LOGGER socket of each host in the Arpanet at 20-minute inter-
vals. It records the date, time, status and response time for
each host and transmits the data to the datacomputer. If the
datacomputer cannot accept the data, it 1s held temporarily
at MIT for later transmission to the datacomputer. The re-
transmission occurs automatically.

Another program a* MIT generates datalanguage for selective
retrieval of the SURVEY data from the datacomputer.

Storage of the SURVEY data at the datacomputer on a regular
basis began on July 10, 1973.

b,2 ETAC Weather Data
Plans are being made for storing a large file of weather data
collected by the United States Alr Force Environmental Technical
Applications Center. In order to get operational experience
with this data, two small files have been loaded using Version
0/9. One is the station library, which has information about
the 12,000 weather stations that report regularly. The second
file consists of one day's weather observations from the entire
world.

These datacomputer flles have been successfully accessed from
CCA. ETAC will begin using them shortly.

-]12=

v & e R i R
N Co ik i B v P R S bl e K R e S i Lo -
"N A §ia PNt Sl ol et S el L S el et 5 i o - g
RS Tl B¢ oy (an et L Lt TN L e b oS g &
e 3 S P g T e e ST b R el LTSS kg
F %A e e

4.3 DECtape FTP
l Harvard University is using the datacomputer to extend its
: storage capacity. A user program running at Harvard transfers
files between Harvard's disk and the datacomputer. Once on
disk at Harvard, a file can be accessed by other programs
there. A Harvard user can save his updated file by storing
it aguin at the datacomputer. This facllity allows users
access to "off-lfne" files without manual intervention.

4.4 Utilization Statistics
The following chart indicates the number of times each Network
site has connected to the dats:computer in the present reporting
period since Version 0/9 was r:de available over the Arpanet.

2132

:
r
w 961 T z 9¢ € STTI nEZ SIVLI0L-aNYY9
m 9611 Z at 6 STITT %6z SIVLIOL-1iLNOY
K
i
i 06 0 0 0 Zs g€ SIVLIOL-N33M
i The LY 57 gL-1nr-T 3L
£ gn+ s¢ €1 €L=1Nr-0¢ NOW
|4
4
W §£2n 0 05 0 £Z¢ 0s STVLIOL-%33IM
; 0+ ¢l-1nNr-6¢ NNS
§ T+ z €L-1Nr-27 VS
i
L+ 09 <1 €2-10r-£7 144
18+ Z ny S €L-1Nr-92 NHL
69+ Y €9 Z €2-1nr-5z7 Q3w
1 88+ €z 76 €1 gL-1nr=-4z7 INL
P 0Tl + 12 L7 ST €L-1Nr-¢Z oY
B [}
i 766 Z 9 f ngYy 811 $IVLuL=-NI3M =
; S5+ 1 zs Z €L-10r-7Z HNS i
§ 8L+ X 9/ 1 cL-10r-1Z Vs
£ ne+ 1 69 LT/ €L-10r-027 Y4
E £IT+ 3 29 Sh €L-1Nr=61 NHL
i 09+ 5i6 S €L-1Nr-21~03M
8S+ 1 0% L €L=-1nr-21 2INL
! 9¢T+ z 001 ne €L-1Nr-9T NOW
w 68% 0 02 < 947 22 CIVLOL-XIIM
¥ z5+ 9 1 G4 €L-1nr-ST NNS
¢ SL+ Z £9 f €L-1NP-4T LYS
|4
3 IST+ 1 T 08 ag SL-I0Ar-€T 144
: 96+ 0f 91 €L-10r-Z1 NHL
55+ 1 Zh A €L-1NP-11 @3M
W sSIvioL AINIL-1id8 AUVH JDXVH-2uvd 92KG-L I V32
i
w m
E ¢
N DN B U D W DUAE S s e e b b b & oo e ™

. an@h&é N Faer e ki R

e Lo b

5. Miscellaneous Activities

5.1 Seismic Data Working Group
Under the auspices of ARPA Nuclear Monitoring Research Office,
a seismic data working group was formed on Februazry 26, 1373

"to coordinate work in progress ir planning the Seismic Data
Acquisition, Processing, Analysis and Storage System required
to support the ARPA Seismic Verification System".

Membership of the seismic data working group consists of
CCA (data storage), BBN (data communication), and Teledyne
Geotech (processing).

CCA accepted this responsibility as part of its present ARPA
contrzct. During the precsent reporting period six meetings
were held in Alexandria, Virginia at the Seismic Data Analysis
Center.

CCA's contribution to these meetings was to discuss alternative
ways in which large seilsmic data files collected from stations
around the world could be stored centrally and disseminated

to interested parties. Alternate technical approaches were
presented, and cost figures were developed. CCA became
acquainted with the data storage and dissemination problems

of the seismic community.

5.2 Technical Presentations
Two major technical presentations on the datacomputer project
were given during this reporting period. The first was at
the EDUCOM Spring Conference, devoted to computer networks,
at Harvard University on April 6, 1973. The second was at the
National Security Agency, Ft. Meade, Md. on June 21, 1973.

-]5w

TP A PRI RS W T T ETIIY R eRPINL T T ITARTEAL VI v WA S TR TR, i =

Appendilx

Version 0/9 Language Specifications

I
|
H
i
1
]
]
I
|
|
l
I
i
|
|
l
I
E

HIC loLho R. Winter
HWG/RFC 515 Computer Corporation of America
nG~Jun=-73

Specifications for Datalanguage, Version 0/9

Preface

batalanguage is the language processed by the Datacomputer, a data
utility system being developed for the Arpanet. The Datacomputer
performs data storage and data management functions for the benefit
of cormputers on the network.

Version 0/9 is currently running at CCA. This version is extremely
primnitive; however, it does offer an opportunity for experience
with the Datacomputer and with fundamental Datalanguage concepts.

Subsequent versions will provide greater porticns of the full
Datalanguage capability, which has been described earlier
(Latalapguage, Working Paper Ho. 3, Datacomputer Project, October,
1971, HNIC 8028). For example, one of the primary restrictions in
U/J-=-elementary diata items must be fixed-length ASCi| strings=-will
be eliminated tn Version 0/10, which is currently being
implemented.

bLased on the experience gained in the implementation of these early

versions, and based on the feedback from their use, a revised
specification of the full language will be issued.

L

Specifications for Datalanguage, Version 0/9 Page 2

1. Introduction

This docurient presents a precise and complete specification of
Datalanguage, Version 0/9. It is organized into 11 sections, of
which this introduction 's the ~f{irst. Section 2 discusses the
capabilities of Version 0/9 in general terms. Sections 3 =nd 4 are
concerned with data description and the directory. Sections 5
titrough 8 cover the expression of data management operations.
vection 4 discusses the recognition of names. Section 10 covers
niscellaneous topics and Section 11 specifies the syntax in BNF.

- bt B .

This specification is to be followed with a user manual, which will
present the language in tutorial form and treat components of the
Datacomputer~-user interface Jther than the language.

2. Capabilities of Version 4/9

Version 0/9 of Datalanguage has capabilities for the storage of
files; for addition of data to existing files, and for the deletion
"of files. Retrievals can output whole files as well as subsets of
files. Data can be selected from files by content, wusing
expressions formed from boolean and inequality operators.

At the option of the file creator, an inversion is constructed and
maintained by the Datacomputer. The inversion increases the
efficiency of selective retrieval, at the cost of storage space and
file maintenance effort. Users other than the file creator need
not be aware of the existence of the inversion, or of which fields
are inverted file keys. The language is designed so that they
state the desired result of a retrieval, and the Datacomputer uses
the inversion as much as the request permits.

Elementary data items are fixed-length ASCit strings. Files are a
restricted class of hierarchical structures.

itany of the vrestrictions mentioned in this mnerno will be
short-lived. in particular, those staternents followed with 3
asterisks (**+) refer to restrictions that will be considerably
weakened or eliminated entirely in the next version of the
software.

4
18

wtn PHA S NN EHNE PR W A seew

e T T ——
[agan o i ﬁ‘!‘ﬁjq o S

Specifications for Datalanguage, Version 0/9 Page 3

3. Data Description

A gcontainer is a variable whose value is a data object of general
character and arbitroacy size (in Version 0/9, size is restricted.
See section 3.i4)., Examples of containers which are implemented in
other systems are files, records, fields, groups, and entries.

The container is distinct from the data in the container. For
exanple, spage gllngn;lnn is an operation on a container, while
changing the yunit price field from 25 to 50 is an operation on data
in a container.

A container mnay enclose other containers. When a containev is not
enclosed by ano%her container, it is said to be guterngst. |If
con*tainer A encloses container B, and no other container in A also

encloses B, then A inmediately encloses B.

A Datalanguage description is a statement of the properties of a
container.

A1l containers have the attributes ident and ftype. ldent is a
character string by which users refer to the container. Jype
determines the form of the container's value; the value can be
elenentary, or it can consist of other containers. There are 3
types: LIST, STRUCT, and STRING(#*+**), A LIST contains a group of
containers having the same description. A STRUCT contains a group

l of containers, each of which has its own description. A STRING s

a sequence of ASClI characters. While a STRING is not really an
elenentary item, it is handled as one in Version 0/9,

Certain containers can have other attributes. An outermost
container has a function. The function attribute specifies whether
the container is to be used for storage or for transmission.

Size is some meaningful dimension of the contalner, which s
type~dependent. It is used for space allocation and data stream
parsing.

An aggregate container (i.e., one that contains other containers)
has as an attribute the description or descriptions of its
components. Thus if S is a STRUCT containing A, B, and C, then the
descriptions of A, B, and C are attributes of 5,

A STRING defined in certain contexts can have an Jjnversion
attribute. This is an access property that is not r2ally local to
the STRING, but is associated with it for convenience.

3.1 ldent
The ident of a container is composed of alphanumeric

characters, the first of which 1Is alphabetic. |t may not
consist of more than 100 characters.

13

Lo IR T W L] —am

MEE $ sams SUNN BT NS PN RN O ewE aees

S

Specifications for Datalanguage, Version 0/9 Page "

¥

The elements of a STRUCT must have idents unique in the STRUCT,

Function

The function of a container is either FILE, PORT, or TEMPORARY
PORT. When the function Is FILE, then the container is used
for storage of data at the Datacomputer. When the function is
PORT, then the container is used for transmission of data into
or out of the Datacomputer. \lhen the function 1is TEMPORARY
PORT (which may be abbreviated TEMP PORT), the container
behaves like a PORT; however, its description is not retained
in the Datacomputer beycnd the session in which it is created.

Type

Type is one of: LIST, STRUCT, or STRING. These are defined on
the preceding page. .

in i occurrence of a STRUCT, the elements appear in the order
in which their descriptions appear in the STRUCT description.
A1l elements are present in each occurrence of the STRUCT.

An element of a STRUCT or LIST can be a container of any
datatype. However, the gqutermost contaiper npust be a
LIGT(www),

[N
wigce

The size of a STRING is the number of characters in it. The
size of a STRUCT is not defined (**%), The meaning of the size
of a LIST depends upon other properties of the LIST (ww»s),

Ordinarily, the size of a LIST is the number of LIST-members.
An exception is the case of the outermost-LIST. In an
outermost-LIST with a function of FILE, the size is the number
of LIST-members for which space should be allocated. When no
size is present in this case, the system computes a default.
In an outermost-LIST with a function of PORT, the size is
ignored (www),

Only outermost containers may be larger than a TENEX page (2560
ASCI1 characters) (##x),

inversion

An inversion is an auxi,:ifary data structure used to facilitate
retrieval by content.

Its basic application is the fast retrieval of sets of
outermost-LIST-members (this can be extended to other container
sets, and will be after release 1). Consider a list of weather

observations, stored as a file on the Datacomputer. If quick
retrieval of observations by COUNTRY is desired, then this s
20

e s)

A B A A,

e g A A W ity

) Commmct e

B §

s MENY 0 JROE O W 0 MR DU B e seew e e

specifications for Datalanguage, Version 0/9 Page 5

indicated in the description of the COUNTRY container.
According to common usage in information retrieval!, this makes
COUNTRY a key in the retrieval of observations,

Note that the inversion option only affects the gfficiency of
retrieval by COUMTRY, not the gbiljity to retrieve by COUNTRY.

There are restrictions on use of the inversion optiun. First,
it can be applied only to STRINGs. Second a STRING having the
inversion option must occur only once in each
outermost-LIST-member. Third, it 1is ignored when applied to
STRIUGs in PORT descriptions.

tventually there will be several types of inversion option; in
Version 0/9 there is only the 'D' option (for distinct).

syntax

The description is simply an enumeration of properties; these
properties are specified in the order:

{ident> <function> {type> <size> <other>

Properties which do not apply are omitted.
An example:

F FILE LIST (25) A STR (10)

Here 'F' is the <ident>, 'FILE' is the <(function>, 'LIST' s
the <type>, '(25)' is the size, and 'A STR (10)' is the <other>
of one description. Of course, 'A STR (106)' is itself another
description: the description for members of the LISY named F.

An example of a complete description for a file of weather
observations keyed on location:

WEATHER FILE LIST
OBSERVATION STRUCT

LOCATION STRUCT
CiTY STR (10), i=D
COUNTRY STR (10), I=D
END

TIME STRUCT
YEAR STR (2)

DAY STR (3)
HOUR STR (2)
END

DATA STRUCT
TEMPERATURE STR (3)
RAINFALL STR (3)
HUMIDITY STh (2)

END
2l

T e

Specifications for Datalanguage, Version 0/9 Page 6

END

The ENDs are needed to delimit the 1list of elements of a
STRUCT. ', 1=D' indicates that the string Is to be an
inversion key for the retrieval of outermost-LIST-members.

22

£

specifications for Datalanguage, Version 0/9 Page 7

k, Directory

The directory is a system file in which the names and descrip:ions
of all user-defined contalners are kept.

The directory is structured as a tree. Each node has an Ident,
which need not be unique. There is a single path from the root of
the tree to any node. The ldents of the nodes along this path are
concatenated, separated by periods, to form a pathname, which
unambiguously ldentifies the node (e.g., A.B.C could be a pathname
for node with an ident of C).

In a la.er version of the software, the directory will be
genecralized to provide for 1inks between nodes, so that It will not
properly be a tree. For now, however, the tree model is convenient
and adequate.

A node may represent a container, or it may simply hold a place in
the space of pathnames. When it represents a zontalner, it cannot
~(currently) have subordinate nodes.

Eventually, It Is planned to model the directory as a structure of
contalners, with its description distributed throughout the
structure. HMost operations defined on the directory will be
defined on wuser data, and vice versa. Access privileges and
privacy locks will be part of the data description and will
likewise be applicable both to directory nodes and data structures
below the node level.

k.1 CREATE

A CREATE-request either: (a) adus a node to the directory,
optionally associating the description of either a PORT ot a
FILE with the node, or (b) creates a temporarv container which
is not entered in the directory, but has a description and can
be referenced in requests. |f the description defines a file,
CREATE causes space to be allocated for the file.

/] [=] v = Wbeant s] L

To create a node with a description:
CREATE <pathname> <{description> ;
To create a node with no description:
CREATE <(pathname> ;
Note that the description determines whether or not the
container is temporary (see section 3.2 for details).

A CREATE-request adds a single node to the directory. Thus to
add CCA.RAW.F to an empty directory, three requests are needed:
CREATE CCA ;
CREATE CCA.RAW ;
CREATE CCA.RAW.F ;
tiotice that the last ident of the pathname doubles as the first
ident of the description:
CREATE CCA.RAW.G FILE LIST A STR (b)) ;

veml o aa =" -t £

21
£

VEES SN AN A W S Vs MR W U W Dew e e Bm e

£ S .

P

Specifications for Datalanguage, VY:rsion 0/9 Page 8

b.2

That is, G is both the ident of a node and the ident of an
outermost contalner of type LIST.

Delete

A DELETE-request deletes a tree of nodes and any associated
descriptions or data. The syntax is:

DELETE <{pathname) ;
The named node and any subordinates are deleted.

llote that to delete data while retaining the directory entry
and description, DELETE should not be used (see section 6.3 for
the proper method).

> LIST

The LIST-request is used to display system data of interest to
a user. It causes the data specified to be trancwitted through
the Datalanguage output port.

Several arguments of LIST apply to the directory. LIST %ALL
transmits all pathnames in the directory. LIST SALL.2%SOURCE
transmits all descriptions in the directory. Instead of $ALL,
a pathname can be used:

LIST <pn>.%ALL
Lists pathnames suvbordinate to <pn>.

LIST <pn>.%SOURCE
lists descriptions subordinate to the node represented by <pn)>.

For detalls about the LIST-request, see section 10.1.

24

b

opecifications for Datalanguage, V- lon 0,9 fage 9

5. Opening and closing containers
Containers must be gpen before they can be operated on.

A container is open when it Is first created. It remains open
until closed explicitly by & CLOSE-request or Iimplicitly by a
DELETE-request or by session end.

A closed container Is opened by an OPEN-request. A temporary
container is always open; a CLOSE-request deletes it.

5.1 Nodes

An open container has a mode, which is one of: READ, WRITE, or
APPEND, The nmode determines the meaning and/or legitimacy of
certain operations cn the container.

The rode is established by the operation which opens the
container. It can be changed at any time by a MODE-request.

A CREATE leaves the container in WRITE mode. An OPEN elther
specifles the mode explicitly or implicitly sets the mode to
KEAD.

5.2 Syntax

To open a container:
OPEN <pathname> <mode> ;
or:
OPEN <pathname> ;
where <mode)> is defaulited to READ,

To close a zuntainer:
CLOSE <ident> ;
where <ident> is the name of an outermost container.

Two contalners with the same outermost <ident> can not be
opened at the samle time (www),

To change the mode of an open contalner:
MODE <ident?> <{newmode> ;

5.3 LIST
LIST %0PEN transmits name, mode and connection status of each

open outerrost container through the Datalanguage output port.
(The Datalanguage output port is the destination to which all

Datacomputer diagnostics and replies are sent. 't s
established when the user initially connects to the
UDatacomputer.) For details of the LIST-request, see section
1v.1. 2;:

i
I
!
I
I
]
]
]
I
l
]
l
l
l
!
I

P RO

Specifications for Datalanguage, Version 0/9 Page 10

L. Assignment
Assignment transfers data from one container to .another.

The equa?! sign ('=') is the symbol for assignment. The value of
the operand on the right of the equal sign is transferred to the
operand on the left, (Eventually, both operands will be
weakly-restricted Datalaasguage expressions, which may evaluate to
sets as well as to single containers. MHow, the left must be a
container nare, the right may be a container name or a constant.)

Assignnent is defined for all types of containers. ilhen the
containers are aggregates, their elements are paired and data is
transferred between paired elements. Elements of the target
container that do not pair with some source element are handled
with a default operation (currently they are filled with blanks).

The operands of an assignment rust have descriptions that patgh.
The idea of watchiagg is that the descriptions must be similar
enough so that it is obvious how to map one into the other.

b.l Conditions for legitimate assignment

Assignment must reference objects, not sets. An object is:

(a) an outermost container, or
(b) a constant, or
(c) in the body of a FOR-lvop, either

(cl) a merber of a set defined by a FOR-QPERAND, or
(c2) a container which occurs once in such a member

In the case of a reference of type (cl), the object referenced
is taken to be the gurrent member. In the case of (c2), the
object referenced is that which occurs in the current member,
This is explained further in section 7.

The left operand of an assignmen: is subject to further
restriction, If it is an outermost contairer, it must be open
in either WRITE- or APPEND-mode. If it is not an outermost
container, then the reference is of type (c), which means that
sorie FOR-operand has established a context in which the
assign-operand is an object. The FOR-operand which establishes
this context must be the guitput-operand of the FOR,

When the assign-operand is an outermost container, it must be
Qpen. Such an operand nwust be referenced by Its simple
container ident(**x), not its directorv pathname.

In the body of a loop nested in one or more other loops,
assignments are further restricted, due tov & /5 inplementation
problem. See section 7.2 for details,

y . ,.“u
nem wes wew wow W DEN TEN UEE TN WS B DO DA By A ol wees

.§

4
Ed

specifications for Datalanguage, Version 0/9 Page 11

b.z

b.3

Finally, the descriptions of the operands must match. If one

is a constant, then the other must be a STRING(*=x), If both

are containers, then in the expression:

A = U;

the desc iétions of containers A and 8 match if:

1. A and B have the same type

2. if A and B are LISTs, then they have equal numbers of
LIST-members, or else A is an outermnost=-LIST,

3. if A and b are aggregates, then at least one container
irmediately enclosed in A matches, and has the samne jdent
as, one container immediately enclosed in 8.

Result of assignnent

If the operands are STRINGs, then the value of g,
left-justified, vreplaces the value of A, If U is longer than
A, the value is truncated. |If b is shorter than A, then A s
f'lled on the right with blanks as necessary.

if the operands are STRUCTs, then assignment is defined in
terms of the STRUCT members. If a member of A, mA, matches and
hes the same name as a member of B, pb, then pB is assigned to
oA. If no such pb exists, then pA is filled with blanks.

If the the operands are LISTs, the result depends on several
factors. First, notice that the descriptions of the
LIST-nembers must match; otherwise the assignmnent would not bLe
legitinate by the matching rules of 0.1.

If A is an outernost-LIST, then it can be in either of two
nodes: WRITE or APPEND. If A is in WRITE-mode, its previous
contents are first discarded; it is then ! andled as though it
vere in APPEND-mode.

If A is not an outermost-LIST, then it is always effectively in
HRITE-mode.

After taking the mode of A into account, as described above,
the procedure is:

for each member of LIST 8
(a) add a new member to the end of A
(b) assign the current mermber of B to the new member of A

Deletion of Data Through Assignment

If A is an outeriost container in WRITE-mode, and B is a
container with description that matches A, and if B contains no
data, then A=0 has the effect of deleting all data from A.
Hote that if A is in APPENL-riode in these circumstances, then
A=L is a no-operation (i.e., has no effect).

il

7.

Sl B s i Tis e il R Lol o i ol

FI T I

MR EE o] g R Tt e

RO RO TR e sl P ik

Specifications for Datalanguage, Version 0/9 Page 12

FOR
FOR <output set spec> , <input set spec> <body> EHD ;

The output set is optional: that is, FOR need nct produce output.
when the output set is omitted, the syntax is:

FOR <input set spec> <body> END ;

The operations specified in the body are performed once for each
mewber of the input set., References in the body to the input set
menber are treated as references to the gurrent input set member.
vWhen an output set is present, a new nember is created and added to
the outnut set for each iteration (i.e., for each input set
nenber). leferences to the output set menber, similarly, are
treated as references to the gurrent output set member.

The output set spec nust be the name of a LIST member. Each
iteration of the FOR will create one such member, and add it to its
LIST (hereafter called the gutput LIST). The body determines the
value that the new mnember recelves. Any STRING in the new memnber
vhich is not given a value by the body receives the default value
of all blanks.

The input set svec rnust be an expression evaluating to a set of
LIST-menbers (see section 7.1 for details of input set
specification). Fach iteration of the FOR will input one such
rmember; the FOR will terminate when each member of the set has been
processed. The LIST from which the input set menbers are drawn is
called the input LIST,

FOR is effectively a neans of acconplishing variants of assignnent
between a pair of LISTS. FOR is less concise than assignment, but
offers more flexibility. Its advantages are:
(a) not all the input LIST-menmbers need be transferred to the
output LIST. A subset can bLe selected by content.
(b) the user has explicit control over the assignment of values to
output LIST-nembers. ~
i,

i !. specifications for Datalanguage, Version 0/9 Pare 13
.
| 1» This is nost easily understood by an exanple:
i I P PORT LIST F FILE LIST
B R} STRUCT i STRUCT
o 6 STR A STRUCT
| I C $TR Al STR
i 5 END A2 STR
| B STR
e C STR
o END
|
1 &
i A4 (1) P =F ;
T (2) FOR P.R, F.R
[P.R = F.R ;
; END ;
(3) FOR P.R, F.R WITH Al EQ 'XY' OR A2 GE 'AB'

B =C ;
| C = A2 ;

END ;

dere, (1) and (2) are cntirely equivalent requests. However, (3)
is quite different and is not expressible as assignment. |t
selects a subset of the F.Rs. The values it gives to the P.Rs
could not result from application of tl.¢ matching rules to F and P,

Lecause FOR is effectively assignment between a pair of LISTs, the
LISTs referenced by a legitimate FOR-operation are largely subject
to the sane restrictions as LISTs referenced in an assignment. One
exception is that the descripticns of the LIST-members need not
match.

These restrictions are:

(a) both LIS5Ts must be objects in the context in which the FOR
appears.

(b) both LISTs must DbLe open or contained In open outermost
containers

(c) if the output LIST is an outermost container, it nmrust be in
WRITE~- or APPENHD-rnode.

(d) If the ouput LIST is not outermost, the LIST which most

irmediately encloses it must be the output LIST of an enclosing
FOR.

ey

The node of the output LIST of the FOR affects the result nmuch as
it wouid in an assignnent: that is, a FOR outputting to a LIST in
W2l TE~-node overwrites previous contents, while a FOR outputting to
a u'ST in APPEND-mode adds to previous contents.

A
(R

l Specifications for Datalanguage, Version 0/9 Page 14

“ CAUTION YO IME READER: For convenience, these specifications use
phrases such as 'LISTs referenced by a FOR', Recall that such a
phrase is not literally correct, in the sense that the operands of

I a FOR are always LIST pephers, not LISTs.
7.1 Details of input set specification

l‘ The input set is specified by a Datalanguage expression that

evaluates to a set of LIST-nembers. Such an expression can be
b i sinply the set of all members of a LIST, or it can be a subset
% of the mnembers of a LIST, specified by content. For exanple,
i with the description:
- F FILE LIST
j R STRUCT
’ A STR (1)
B STR (1)
END

the expression:

F.R
references all R's on the LIST ., However:

F.R WITH A EQ '5!
references only those R's containing an A having the value '5°'.
Thie expressions permitted as input set specifications are of
the form:

{list-member-name> WITII <boolexp>
The <boolexp> is constructed of cornparison expressions joined
by the Boolean operatorsAHD and OR. Any expression can be
negated with NOT.

Comparison operators have the highest precedence. Hext highest
is AND, then OR, then NOT.

The comparison expressions are restricted to the form:
{container name> <corop> <constant>
where!
(a) <constant> is a string constant enclosed in slngle quotes
(see section 10.2 for a discusslon of constants)
(b) <comop> is one of sir operators:

-

s W TN somsg omus W S — P——

EQ equal

HE not equal

LT less than

GT greater than

LE less than or equal to

GE greater than or equa! to

{c) <container name> is the nanme of a STRING that appears once
in each LIST-nember,

The constant is truncated or padded with blanks on the right to

malke it equal in slze to the container to which it is being

conpared, Notice that padding on the right is not always

desirable (users will have control over the padding in a future

release). In particular, care must be excercised when using

TRSITR B

nuribers in Version 0/9. (A number represented as a STRING
2 should actually be described as a nurmber; eventually it will be
b o (\
1 oL

Specifications for Datalanguage, Version 0/9 Page 15

possible to do tnis).

7.2 FOR-body

Two operations are legitimate in a FOR-body: FOR and
assignment.

I

Bl o

These are subject to the restrictions discussed in Section 6.1
and in the introduction to Section 7. The restrictions are
related to three requirements: (1) that the names be
recognizable (see Section 9 for details), (2) that a request be
consistent regarding direction of data transfer between
containers, both within itself and with the /1ODE of outermost
containers, and (3) that transfers occur between gbjects, not
sets of obiects. The first two requirements are peimanent, but
viill become weaker in later versions of the language. The last
requirement is temporary and will be present only in early
versions.

T T YT

S o ke

ke —— P C—————— ”
_— = - . S iy P

Due to an implementation problem associated with Version 0/9,
there is a somewhat bLizarre restriction applied to references
made in the body of a 1loop nested in another 1loop. This
restriction is not expected to pose any practical problems for
users, and is not part of the language design, but is discussed
here for completeness.

The restriction is most easily understood by example:

given the description

F LIST
R STRUCT
A STR (3)
BL LIST (3)
G STR (3)
C STR (3)
END
and the request fragment:
FOR ...,R
FOR ...,B
el =l FARS:
A (]
END
END
observe:

(a) The outer loop processes the set of R's in F.

(b) For each R in F, the inner loop processes the set of B's in
the BL contained in that R.

(c) In the body of the inner loop, there are references tc A
and C, which do not occur in B, but do occur In R, That
is, the objects referenced in the inner 1locoo body are
defined by the outer loop, not the inner loop. In general,
this is fine; in the case of C, however, we have a problem.

31

;
|
I
I
i

A& N Ml S ket ewed eemd ead e Geed Seeed Gmed e ey Wewd ey e RS R

Specifications for Datalanguage, Version 0/Y Page 106

(d) C occurs hevaond the end of GL.

The 0/9 compiler is capable of neither (1) looking ahead enough
to locate C before it corpiles code for the 100op, nor (2) while
gencrating code to loop on the B's in BL, generating a separate
Lody of code that skips to the end of BL to locate C. Thus it
can handle A, which has been located before it begins 1loop

generation, but it cannot handle C, which requires a little
foresight.

The request fragment shown would not cause problems if the
description were changed to:

F LIST
{ STRUCT
A STR (3)
C STR (3)
BL LIST (3)
L STR (3)
END

Then both A and C would have been found before code for the
inner loop was generated.

32

<§4~M‘J

Ao

specifications for Datalanguage, Version 0/9 Pare 17

"
LY

bData Transmission

vata is transferred frow container to container by execution of
assignnent and FOR operations. The outermost containers involved
in transfers can be files or ports. |If both are files, then the
transfer is internal tu the Datacomputer. |If either is a port,
then an address in the external world is needed to accomplish the
data transnission.

such an address is supplied through a CONNECT-request, which
associates a container (having a function of PORT) with an external
address:

CONNECT <ident> TO <address> ;
itere <{address> is either a specification of host and socket number,
or a TENEx file designator (for CCA's TENEX) enclosed in single
quotes. The host and socket forn is:

{socket> AT <lwost>
vhere <socket> is a deciimal number, and host is either a <decimal
nutber or a standard host name (since standard host names don't
exist right now, it has to be the TEMNEX ‘'standard' name for the
host. Contact the autlior for the latest 1list.) If <host> is
onitted, it is taken to be the host fron which the Datalanguage is
being transmitted.

The address assoriated vith a port can be changed by issuing
another COHHECT-request.

A DISCONNECT-request sirply breaks an existine port/address
association without establishing a nev one. (A CLOSE-request that
references an open port executes a DISCORMECT.) The syntax of
CISCONHECT is:

DISCONHECT <ident)>

A port is disconnected when: (a) no successful CONNECT-request has
ever been issued for it, or (b) a DISCONNECT for the port has been
executed since the last successful CONNECT.

Vhen a disconnected port is referenced in an assignment, it s

connected by default either to:

(a) the connection used for the transnission of Datalangauage to
the Latacoputer, or

{b) the connection wused for the transnission of Uataconputer
giagnostics to the user

The choice between (a) and (b), of course, depends on uhether the

reference is for input or output. These connections are

established by the network user's ICP to the Dataconputer at the

beginning of the session.

note that CUliECT and DELSCONLICT do not open files or network
connections, They sinply make address associations within the
Lataconputer. The files and connections are opened hefore each
request and closed after each request.,

33

[
me Uy S RS e AR

s

specifications for Latalanguare, Version 0/9 Page 18

Hanes in Datalanguage

A nane is recognized when it has been associated with a particular
data container or set of containers.

Datalunguage has mnechanismns for the recognition of names in

contexts. That is, the neaning of the name is related to where it
appears.

This nakes it possible to attach natural neanings to partially
qualified names.

For exanple:

WEATHER FILE LIST
STATION STRUCT

CITY ST (15)

STATE 3TR (15)

DATA LIST (24)

OBSERVATION STRUCT

HOUR STR (2)
TENMPERATURE STR (3)
HUNIDITY STR (2)
PRESSURE STR (&)
ERD

END

RESULTS PORT LIGT
RESULT STRUCT
CITY STR (15)
HOUR STR (2)
TEMPERATURE STR (3)
END

FOR STATION WITHH STATE EQ 'CALIFORHIA!
FOR RESULT, OLSERVATION WITH HOUR GT '12°
AND (ULIIDITY LT '75°

CITY = CITY ;

HOULR = {IOUR ;

TEMPERATURE = TEMPERATURE ;
END ;

Chb

in the assignment 'CITY = CITY', the first CITY is understood to be
RESULT.CITY and the second is understood to bhe STATION.CITY.

3k

Gusy pwed Juset el el BN B ER R

, . . " .

g Wewey e

zfé.

oo

g

Specifications for Datalansuage, Version 0/9 Page 19

9.1 Informal Preser.tation of Recognition Rules

"Ident' is used in the sense of section 3. ror example, in the
description:

¢ FILE LIST R STRUCT A STR (1) B STR (1) END
F, R, A and B are idents.

A context is a tree whose nodes are idents. In such a tree,
the terminal nodes are idents of STR!NGs. The ident of a LIST
is superior to the ident of the LIST-member. The ident of a
STRUCT is superior to the idents of the STRUCT elements. The
context whose top node is F is said to be the gontext of E.

tommm—- +
I F
bommat
!
!
$mmmaa +
PR
tmm————- +
|
!

L tommcmcm—n +

! !

! !
R + tem——- +
I A I ! B !
R + tmm——- +

Cigure 9.1-1 The context of F

A pathnane is a sequence or idents, naming nodes along a path
from one node to another. A full pathname in the context
starts at the topmost node. Thus F.R.B is a full pathname in

the context of F. A partial pathpname starts at a node other
than the topriost node (e.g. R.B, B).

In Datalanguage, pathnames omitting intermediate nodes, such as
F.b (which omits 'R'), are not pernitted. Thus partial
pathnames are partial only in that additional names are implied
on the left. "y

ak

M

! Specifications for bLatalanguage, Version 0/9 Page 20
I Three atteripts at recognition of a pathname, PN, in a context,
CX, are made:
I’ (a) recognition of PN as a full pathname In CX
(b) recognition of PN as a partial pathname in which only the
topmost node of CX is omitted
(c) recognition of PH as an arbitrary partial pathname
I occurring only once in CX.

The atteripts are made in the above order, and the recognition
process halts with the first successful attempt.

3¢

s SR R OB

[Specifications for Datalanguage, Version 0/9 Page 21

E As an example, consider the description:

F FILE LIST
E R STRUCT
A STR
" B STR
L S STRUCT
R STR

which defines the context in Figure 9.1-2.

oy

toem—a- +
I F !
bmmmnnd
!
!
trmmm- +
t{f R !
tommae- +
!
]

L L LT T L Y ettt +

! ! !

! ! |
tom—-—- + temmm- + o mmmd
! A I B ! [
o mm- + bmm——- + bemmmad

!
!
tomnn- +
! R !
tomma- +
Figure 9.1-2 Example Context

In this cortext, F.R.A is a full pathname. Thus, F.R.A s
recognized in attenpt (a). R is a partial pathname in which
only the toprmost node is omitted. Thus R is recognized in
attempt (b). Hote carefully that R is vrecognized as a
reference to F.R&, not to F.R.S.R. Finally, B is an arbitrary
partial pathname occurring only once In the context. Thus b is
recognized in attempt (c).

Two stacks of contexts are maintained: one for names used in an
input sense, and cne for names used in an output sense. Vhen a
narme i5 to be recognized, it is first decided whether the
reference is &n input reference or an output reference. An

317

[
|
[
|
|
l
I
i
I
j
I
b
!
%

)
I
I
l
i
!
!
i
l
!
I
1
i
1
1
l
1

specifications for Datalanguage, Version 0/9 Page 22

input reference is (a) the right hand operand of an assign, or
{b) a nane in the input set spec of 2 FOR, An output reference
is (a) the left operand of an assign, or (b) the output operand
of a FOR. The first context on the appropriate context stack
is then searched, according to the procedure outlined on the
previous page. If the name is neither recognized nor ambiguous
in that context, search continues in the next context on the
stack. If the name can be recognized in none of the cuntexts
on the appropriate stack, it is unrecognizable.

\Wlhen a stack is eripty, the recognition procedure is different.
The search is carried on in a special context: the context of
SOPEN. Itts top node, %0PEN, 1is a built in system ident.
Subordinate to LOPEM is a context for each open directory node.
Each such context represents all the idents defined in the
associated date description. Thus, 1if there were two open
directory nodes having data descriptions:

F FILE LIST 22 STRUCT A STR (1: B STR (1)
and:

P PORT LIST R STRUCT A STR (1) B STR (1)
then the context of ZO0PEN would be as in Figure 9.1-3.

toccncaa +
I %OPEN !
4rmmmcaa +
!
!
teccmccccana P L Y T +
! !
! !
tmmm—- + o= +
[L LA
tommaa + tomm=- +
] !
| |
tomme=- + b=y
T S ' RO
encce + tomem- +
! !
! !
temcm- $oecca= + temmvetoccnna +
| ! |
! ! ! |
tmmca= + tommaa + pommea + 4omcnn +
I A ! B ! ! A ! ! b !
tocmm= + boemce= + bmmm——y temcaa +
Figure 9.1-3. The context of J0PEN
38

i
I
i
,
|
I
l
;
g
B
)
)
i
I
|
!
l
i

Specifications for Ustalanguage, Version 0/9 Page 23

902

When a directory node is closed, the corresponding context s
removed from tha context of %0PEN. When a node is opened, the
associated con:gxt 1is added as the rightmost context
subordinate to }OPEN.

Context Stack Maintenance

The context stacks are always empty between requests. The
FOR~operator adds entries to the stacks. FOR A adds the
context of A to the input context stack. FOR A, B ... adds
the context of A to the output stack and the context of B to
the Input stack.

Whicnr adding to an empty stack, FOR a2dds two contexts instead of
one. The second addition to the stack is the context of the
looparg; the first addition is the context of the outermost
container which encloses the looparg.

For example, given a context of %0PEN as in Figure 9.1-3, and
enpty context stacks, the fragment 'FOR F.R ...' adds two
contexts: (1) the context of F, and (2) the context of F.R.

Contexts are removed from the stacks by the END matching the
FOR which added them.

c

~
<
J

Speclficatlions for Datalanguage, Verslion 0/9 Page 24

10. Miscellaneous Topics

10.1 The LIST-request

S oy gl

The LIST-request provides a means for the user to inspect
system data of inteiest to him. The user can determine the
contents of the directory, the source or parsed form of any
data description !n the system, and the mode and connection
T status of any open file or port.

e

The LIST operator has a single operand, which can have any of

= several forms. The action of the operator is to output a list
; of values on the Datalangauge output port.
To output a list of pathnames, the operand used 1is 'ZALL'.
When '$ALL' appears alone, all pathnames in the dlrectory are
listed. tihen '.%ALL' appears after the 1last 1ident in a
directory pathname, the full pathnames of all nodes subordinate
to the narned node are listed.

A

To determine the status of the open files and ports, the
operand 'GOPEN' is used. It outputs directory pathname, mode
and connection status.

To output one or nore source descriptions, the operand
'.%SOURCE' is wused. ' %SOURCE' is preceded with one of (a)
'SALL', (b) '"SOPEN', or (c) the ident of an open outermost
container., The output is either (a) all descriptions, (b) aill
? open descriptions, or (c) a particular open description.

To output a parsed description, the operand ',%DESC' is wused
('SDUSCRIPTION' is also accepted). This operand is preceded
either with (a) 'ZOPEN', or (b) the ident of an open ou'ermost
container,

Examples:

Let P be the ident of an open PORT. Let A.B.C be a
directory pathname.,
! LIST LALL
LIST A.B.C.SALL
LIST %OPEN
LIST SALL.SSOURCE
I LIST $OPEN.%SOURCE
LIST P,.%SOURCE
l LIST %OPEN.5DESC

LIST P.SDESC

Wote that "LiST A.B.C.%SOURCE' is not 1legal =-- ',SSOURCEC!
rust be preceded with the ident of an open container, not a
pathname, A similar restriction applies to ',GDESC',

(]

PRAITHAAR SR PR AT URS-ETT JFRCPRTRIC I ITRIIT TRRY LT rem———

Wi WA AT TR WL

TTHREIVRET R AT

e Geus PN

.. .

l
|
i
:
i
i
f
i
¢

PRI

Specifications for Datalanguage, Version 0/9 Page 25

10.2 Constants in Datalanguage

A constant of type STRING can be included in a Datalanguage
request by enclosing it in single quotes:

'AuC!
A single quote is included in a constant by preceding it with a
double quote:

YFATHER"'S!
Liltewise, a double quote is included by preceding it with a
double quote:

YJOHN SAID "'HELLO™™!

Such constants can be used o the right of comparison operators
and of assignment operators wh ich reference strings.

Cventually, Datalanguage will contain facilities for the
inclusion of constants of al! datatypes; such constants are
simply a special case of the Datalanguage expression and will
be pernitted wherever such expressions are permitted.

“10.3 Character Set

Internally, Version (/9 of the Datacomputer software operates

in 7-bit ASCI! characters. lts output to the ARPAHET is
converted to 8-bit ASCHI. On input from the ARPANET, it
expects §-bit characters, which it converts to 7-bit

characters.

To convert from 7- to 8-bit characters, a '0' bit is prefixed.
To convert from &- to 7-bit characters, the high-order bit is
checked. If the high-order bit is a '0', the bit is discarded
and the character is accepted as a 7~bit character. [|f the
high-order bit is a '"1', then the character is discarded.

(tn the following discussion, as elsewhere in this memo, all
references to numerical! character codes are in decimal).

The remainder of this section discusses treatment of codes 0
through 127, when they appear in Datalanguage requests,

In general, printing characters are acceptable in requests,
while control characters are not. There are some exceptions,
which are detailed below. The printing characters are codes
32-126. The control characters are codes 0-31 and 127.

Certain control characters are accepted:

Tab(y) is accepted freely In requests. it functions as a
separator (explained below),.

EQL(31), meaning end-of-line, is accepted in requests,
functioning both as a separator and an activator (a). EOL
has a special meaning in data, and should not be introduced

L1

e 3

[P R—)

Ny £ ok L] o [r—

2

S

P;-
|

$pecifications for Datalanguage, Version 0/9 Page 26

into STRING constants(#ww),

Control-L(12) is an activator and a high-level request
delimiter. It terminates the text of any request being

processed when it is encountered in the input stream. It
useful in Datacomputer-user program synchronization.

Control1-2(26) mneans gnd-of-session when encountered

Datalanguage. It has the properties of control-L, and in

addition, causes the Dataconputer to execute
end-of-session procedure, which results in closing

Datalanguage connections, closing any open files or ports,
etc. The effect is equivalent to a LOGOUT(which does not

exist yet).

The two-character sequence <carriage return(13),

feed(1lU)> is equivalent to EOL (and is translated to EOL on

input from the network). The reverse sequence, as wel!

either character alone, is treated simply as other control

characters (ignored).

The printing characters are further divided into four sroups:

special characters, upper case letters, lower case letters,

diglts (the membership of these groups is defined in section

11).

Corresponding upper and lower case letters are equivalent
requests, except within quoted strings.

Certain special characters have a lexical function, which

elther Lreal, or separator. A break character terminates the

current lexical item and returns itself as the next item.

separator character terminates the current item but does not
begin a new item (i.e., its only function is to separate |tems),

Multiple separators are equivalent to a single separator.

separator can always be inserted before or after a Dbreak

character, without altering the neaning of the request.

The separators are tab(3), space(32), and end-of-1line(31),

The Lreak characters are left parenthesis(ii), right
parenthesis(41), equals(tl), setiicolon(59), period(L40),

comna(bs), quote(39), and slash(47).

La) An activator character causes the Datacomputer to
process whatever has lLeen received since the previous
activator or the veginning of the request. The neaning
of a reguest is independent of the presence/absence of
activators. However, a request will not bLe executed
until an activator bLeyond the end of the request is
recelved. P

i & .

Specifications for Datalanguage, Version 0/9 Page 27

tihile Version 0/9 defines (carriage return, linefeed) in terms
of EOL, network users should not think in terms of sending EOL's
to the Latacomputer over the network. EOL is not part of the
network ASC!! character set, and has no definite permanent place
in Datacomputer implementation plans,

1.4 Corvients

Comments can be included in Datalanguage requests. A comment is
begun with the two-character sequence '/*', and ended with the
two-character sequence ‘'%/', Since slash is a hreak character,
a cornent does cause a lexical break; its overall effect is that
of a separator.

L3

VD

Specifications for Datalanguage, Version 0/9 Pare 28

10.5 Rescrved ldentifiers

Certain identifiers are reserved in Datalanguage, and should not
be used to name containers or directory nodes. These are:

AND
APPEND
AT
CLOSE
CONNECT
CREATE
DELETE
DISCONNECT
ERD

EQ
FILE
FOR

GE

GT

LE
LIST
LT
MODE
HE

HOT
OPEN
OR
PORT
REAU
STR
STRUCT
TO
WITH
WRITE

Hore reserved identifiers will be added in Versior 0/10.

L

e i

11. uvatalan;uaze Syntax txpressed in JiF

1l.1 Kequests

11.1.01 <(reguestd> ::=

il.1.,0e¢ <Leeguestd = Lcreated ;
11.1.03 <reguest> ::= UPEE {ond

11.1.94% <requestd ::= IPEI <{pnd <ioded
11.1.U5 <request> ::= CLOSE <Cident> ;
11.1.90 <reguest> 1= CONMMNECT <identd> TO <address)y ;
11.1.37 <Lreguestd> ::= IZISCONNECT <identd
11.1.88 <reguest> 1= ADRE <ident) < oded

.
’

11.1.0) <request> ::= IZELETE <pn>

11.1.11 <requestd ::= <sre=reguest>

.
’

l 11.1.10 <regquest™ ::= LIST listar=> ;

—] 2= ¢e=_1}

|
|
1
x
l
l
|t
El
@

Page 31

11.2 Yata Description and Creation

11.2.01
11.2.02

11.2.03

11.2.04

11.2.05
11.2.00
11. 2407

11.2.08

11.2.09
11.2.19

11.2.11
1.2 .12
11.2.13

11.2. 14

11.2.15

{create> ::
{create> ::

{create> ::

{desc)> ::=

Cattributes>

attributes>

attributes>

<attributes>

<descs> ::=

{descs> =
{ftny> ::=
{ftn> ::=

(fFitn> =

{ftn>

..
.

{sized> ::=

CREATE <pn>
CREATE <pn> <ftn> LIST <descd

CREATE <pn> <ftn> LIST <size> <decsc>

Cident> <attributes>

348 LIST <size> <{desc>
t:1= STRUCT <(descs> END

= S5T®% <(sizeD

..
.o
I

ti= STR <size> ,1=D

{desc>

{descs> <{desc>

PORT

F

ILE

TENP PORT

TEIIPORARY PORT

(

{integer constant))

LE

fare 32

11.3 Sata Storase and Retrieval

11.3.J1 <sr-request> ::= {assi~n

11.5.92 <sr-reguest> ::= {loon

Gt ey e e

11.5.95 <assiznd :1:= <(pnd = (chjectd

[
11.3.94 <loop> ::= FO2 <loopar~> <1ncnhody)> E!N
11.5.05 <loopargd ::= <(expd
11.3.90 <loonarz> ::= <¢pnd , <oxn
11.5.07 <loonbody> = <{sr=request)
it 11.3.93 <loonbody> = <loerbodyl> <(sr=request)
i
¢

11.3.3) <loopbody> 1 <loopbodvl>

11.3.1u <loopbodyld ::= <srerequest) ;

11.3.11 <loopbodyl> :: {lconbodyl> <sr=request) ;

b7

11.4 Expressions

11.5.01
11.4.02

11.4.03
11.4,94
11.5.35
11,453,400

11.5.37

il.4.us
11.4.34
11.4.14
11,4, 11
114512

11.4%.15

{exp>

{exp> ::

<boolexp>
{boolexpd
woclexp
Covolexp?

{booulexd?

{culnGp
{Coiicp?
{eoiwp?
{comop?
<Tohwp»

{coimond

<nnd

<pn> WITH <boolexp>

{pnd> <{comop> <string constant>
(<hoolexpd)

HOT <hoolexpd

Gooolexisd> AL <houlexpd

<octexpy 20 <heolexp?

4R

11.5

Paze 34

.iscellaneous

11.5.01 <address) ::= {quote> KTEIEX fila desiznater)
{ydoted
11.5.92 <address) ::= <socket) AT <liest)

11.5.93 <aldress) ::= {sucket)

11.5.04 <socket) :: = {integer constort) [V IETERE e, b

JECIAL
11.5.35 host> = [inrtezger constant) i 1= TE R ETIEY e
JRCLAAL

11.5.00 <host *xkxx TONEX lost nanes *#xsxs

11.5.97 <objectd ::= <pn>

11.5.33 <ebjectd ::= {stringz cunstant)

11.5.09 <aoded ALAD

11.5.10 <mode> & APPEND

11.5.11 <oded ::= 7L
L9

)

~

1 L LN e AT

11:.5a12
1L.5.13
11.5.14%

11.5.1%
11517
11,8 18

11.5.1)

115423
11.5.21

11+5522

15.56.23

11.5.24

Cquote>

14.5:%8
11.5.23

listery
(listarg>

{listarz

CLISTARGD
{listary
istarg>

(listara

{ident>
{ident>

Cident>

{integer

{integer

{string ¢

{string

{string

conbed;, >

conbody> 3

50

$i= SALL

= Xpn> 5 EALL
$i= SOPEN
8= ZALL L GSuuncE

$i= KIDEHTY . 50URCE

= LOPER

%SBOURCE

t= LOPEN . 2dECSC

= Lident> ., L3E5C
{ident>
<ond JLident)

{loetter)

ii= (jdentd letter>
(ident) digit
constant> ::= <dizit)

constant> ::=

onstant>

{norquote)

{intezer constant) igit

{quote> <string conbody)

{string conbody> {ronqucte)

11.L Character Set

11.0.91 <separator>
11.5.92 <separator>
11.6.03 <separator>
11.6.04 <{special>
11.5.05 <special>
11.0.05 <special>
11.0.07 <(letter>
11.5.083 <(letter>
11.06.03 <(letter>
11.9.1) (latter>
11.5.11 (letter>
11.6.12 (letter> ::
11.6.13 <Ldigit>
11.6.14 <digit>
11.0.15 <Jdigit>

C.

//SPACE(32)
1/TAS(3)

{quote>

{superquote>

{speciall>

Page

3C

Page 37

11.6.16 <nonguote> ::= <letter>

11.5.17 <nonquote> ::= <Ldigitd

11.v.13 <nonquote> ::= <superquoted> <{quote>
11.6.13 <nonquote> ::= <superquote> {superguote>
11.6.29 <nonguote> ::= <speciall>

11.0.21 <nonquote> ::= <separator>

11.¢.22 <eol>

//EOL (31)
11.9.23 <eol>

{carriage return> <line foed>

11.6.24 <carriage return> ::= //CASRTACE RETURN (13)
11.0.25 <line fced> ::= J/L1IE FEED (10)

11.6.26 <quote> ::= ' //SINGLE QUOTE(4k)

11.0.27 <superquote> 3= " J/DOUSLE JQUOTE(34)

11.0.23 <specialld ::= | //ODXCLAUATION POINTI33)
11.6.23 <speciall> = # //MUIIBCR SIGH(3S5)
11.6.30 <speciall> ::= 35 //DOLLA? SIGN(3C)
11.0.31 <(specially ::= 2 //PEXCENT SIGN(37)
11.0.32 <specialld ::= & //NIPERSAND(3ZS)

11.6.33 <speciall> ::= (//LEFT PARENTHESIS(40)
11.6.34 <speciall> ::=) //RIGIT PAREMTIUESIS(41)
11.0.35 <specialld> 3= * J/ASTERISK(LZ)

11.0.3b0 <SGPECIALL> ::= + //PLUS SIGN(43)

11.6.37
11.56.338
1k, 5439
11.0.°W0
11.6.41
11.5.42
11.46,43
11.0.44%
11.6.45
11.0.40
11.6.47
1l.0.48
11.0.43
Il . 50
11.5.51

TUIEEE 512

11.0.54

11.0.

vl
w

11.6.55

11.5.57

{specialld
{speciall)
{speciall>
{specialld
{speciall>
{specialld>
{speciall>
{speciall>
{speciall
{speciall>
{specialld
{speciall>
{speciall>
{speclall>
{speciall>
{speciall>
{specaill>
{speciall>
{speciall>
{speciall>

{speciall>

L]

— s

>

Page 3¢

//COMACLY)

[0S SIGH(4S)
//PEXRISDR(4¢G)

//SLASI(47)

//COLOM(58)

/75T CAL3E(53)

//LEFT ANGLE SRACKET(EO0)
//EQUAL S1CH{G1)

//21CAT ANGLE BRACKET(C2)
L4 WESTION SAKCEE)
J/AT=51CH00L)

//LEFT CAUARF BRACKET(31)
//CrCH SLASIH(32)

J/R1CAT S7CARE BRACKET(23)
//CIRCUNFLEX(IL)
//UNDENTAN(IS)

//ACCENT GRAVE(JG)

AYLEET B2MCE(1230
J/VESTICAL sA2(124)
SRV SRAGE (2250
J/THLOE(126)

